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Abstract- In this paper, the Korteweg-de Vries Equation which incorporates convection and diffusion in fluid 

dynamics, and to describe the structure of shock waves is solved by Variational Homotopy Perturbation Method. 

The numerical solutions obtained are compared with the exact solution which demonstrates the accuracy and 

efficiency of the method. The results reveal the applicability of the method to other nonlinear problems. 
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1.INTRODUCTION 

In 1984, while conducting experiments to verify the 

most competent design for canal boats in  the Union 

Canal at Hermiston, nearby to the Riccarton campus 

of Heriot-Watt University, Edinburgh ,a Scottish 

engineer named John Scott Russell  was  observing the 

motion of a boat which was rapidly drawn along a 

narrow channel by a pair of horses, when the boat 

suddenly stopped it  left behind solitary elevation, a 

rounded, smooth and well-defined heap of water, 

which continued its course along the channel 

apparently without change of form or diminution of 

speed. Russell named that phenomenon as Wave of 

Translation. Further investigations were done by Airy, 

Stokes, Boussinesq to comprehend this 

phenomenon.In 1895, Korteweg and Vries after 

performing a Galilean and variety of scaling 

transformations derived KdV equation to model 

Russell’s phenomenon of solitons [1] 

 It was not until the mid 1960’s when applied 

scientists began to use modern digital computers to 

study nonlinear wave propagation that the soundness 

of Russell’s early ideas began to be appreciated. He 

saw the solitary wave as a independent dynamic unit, a 

thing which possess many properties of a particle. 

From the modern standpoint it is used as a 

constructive element to formulate the complex 

dynamical behavior of wave systems all the way 

through science: from hydrodynamics to nonlinear 

optics, from plasmas to shockwaves, from tornados to 

the Great Red Spot of Jupiter, from the elementary 

particles of matter to the elementary particles of 

thought.  

It is motivating to explore the beauty of the Korteweg-

de Vries Equation (KdV) which is nonlinear which 

exhibits special solutions, known as solitons or 

solitary waves. Solitons are stable and do not disperse  

 

 

 

 

 

 

with time. Furthermore there are solutions with more 

than one soliton which can move towards each other,  

interact and then emerge at the same speed with no 

change in shape. The Korteweg-de Vries is a 

hyperbolic PDE from that it follows that it describes a 

reversible dynamical process.KDV has motivated 

considerable research into analytical and numerical 

solution by several methods. Recently the study of 

solitons has been the focus of many researchers. Ganji 

DD and Heidari M [2] solved this equation by 

Homotopy Perturbation method. Wazwaz AM [3] 

obtained rational solutions by ADM. Wang C et al [4] 

applied HAM to solve this equation, whereas He JH 

and Wu XH [5]; He JH [6] applied both VIM and 

HPM to obtain solitary solution. Many authors 

Gardner CS et al [7], Khattak AJ and Siraj-ul-Islam 

[8] solved KdV equation numerically. 

Here, the Korteweg-de Vries equation is solved by 

Variational Homotopy Perturbation Method 

(VHPM)[9,10] which converges very fast to the 

results. Moreover, contrary to the conservative 

methods which require the initial and boundary 

conditions, the VHPM provide an analytical solution 

by using only the initial conditions. The solution is 

presented graphically by Mathematica. 

 

2.VARIATIONAL HOMOTOPY 

PERTURBATION METHOD 

To convey the basic idea of the Variational homotopy 

perturbation method, we consider the following 

general differential equation  

( )Lu Nu g x     (2.1) 

where L is a linear operator, N is a nonlinear operator, 

and g(x) is the forcing term. According to variational 

iteration method, we can construct a correct functional 

[6] as follows: 

      1 ( )

0

( ) ( )

t

n n x n nu x u Lu Nu g d           

                 (2.2) 
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Where the general Lagrange multiplier is  , which 

can be identified optimally via variational theory. We 

apply restricted variations to nonlinear term Nu so 

that we can determine the multiplier.  

The Variational Homotopy Perturbation Method [11] 

is obtained by the elegant coupling of correction 

functional of Variational iteration method with He’s 

polynomials and is given by 
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(2.3) 

A comparison of similar powers of p gives solutions 

of various orders. 

This method does not resort to linearization or 

assumptions of weak nonlinearity, the solutions 

generated in the form of general solution, and it is 

more realistic compared to the method of simplifying 

the physical problems. 

 

 

3.SOLUTION PROCEDURE 

The Korteweg and Vries equation (KdV) equation has 

a form  

 
3

3

u u u
u

t x x
 

  
 

  
    

Where u(x,t) is the solution ,µ and ε are positive 

integer, x is the space variable and t is the time. For 

purpose of illustration of Variational Homotopy 

Perturbation method for solving the KdV equation ε = 

6 and µ = 1  

 
3

3
6

u u u
u

t x x

  
 

  
   (3.1) 

 We start with an initial approximation 
2( ,0) 2secu x h x 

 
 

The exact solution of equation (3.1) in the closed form 

is  

 
2( , ) 2sec ( 4 )u x t h x t    

According to Variational Homotopy Perturbation 

method, we construct the correction functional for 

equation (3.1) as 

 

     
3

1 3

0

, , 6

t

n n n

n n n

u u u
u x t u x t u d

t x x
  

    
     

     


 

Making the above functional stationary, the Lagrange 

multiplier can be determined as 𝜆 = −1, which yields 

the following iteration formula 
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Applying the variational homotopy perturbation 

method and comparing the coefficient of like powers 

of 𝑝, we have 

 
0 2

0: ( , ) 2secp u x t h x 
 

 
1 2

1: ( , ) 16 sec tanhp u x t t h x x 
 

 
2 2 4

2: ( , ) 32 ( 2 cosh 2 )secp u x t t x h x   
 

 

and so on . 

Thus when we obtain the components the solution 

becomes 

 

0 1 2 3 4( , ) .........u x t u u u u u      

 

4.CONVERGENT STUDY FOR THE 

SOLUTION 

 
2 2

2 4

( , ) 2sec 16 sec tanh
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 (4.1) 

 

For proving the convergence 
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Thus the third approximation becomes 
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2 2sec tanhh x x  

Thus equation (4.1) can be written as 
2 2

2 2 2

( , ) 2sec 16 sec tanh

32 sec tanh

u x t h x t h x x

t h x x
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
 (4.2) 
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Now for the equation (4.4) 

We know that 

 tanh 1x   

And  0 1t   

Thus  1 1n

n

a

a

   

Therefore the solution (4.1) is convergent by ratio test. 

 

5.RESULTS AND DISCUSSIONS 

In the present paper, an approximate solution is 

obtained of Equation (3.1) to emphasize the precision 

of the present method the numerical values are 

compared with the exact solution; results are 

summarized in Table 1 which shows that solutions are 

in excellent agreement with the numerical solutions 

and exact solutions at different values of x for specific 

values of t.  

The 3-dimensional graphical representation of the 

solution of the KdV equation with space and time is 

shown in figure 1. In figure 2 , graph of exact solution 

versus x is given  at different values of time.The 

graphs  shows that solution are in good agreement 

with exact solution.Contour plot in figure 3 clearly 

shows waves. 

From the three dimensional graph it clearly represents 

solitary wave observed by peak amplitude. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1 Comparison of solution of KdV equation by 

VHPM at different times with the exact solution 

 

 x Exact Solution VHPM Solution 

t=0.01 -7.5 -0.00000225906 -0.00000225927090 

-2.5 -0.04914600344 -0.049150051640055 

2.5 -0.05754985288 -0.057545658380948 

7.5 -0.00000265103 -0.000002650825392 

 

t=0.02 -7.5 -0.00000208538 -0.0000020869868 

-2.5 -0.04541063202 -0.0454424532021 

2.5 -0.06226782912 -0.06223366668393 

7.5 -0.00000287183 -0.00000287009587 

 

t=0.03 -7.5 -0.00000192504 -0.00000193036505 

-2.5 -0.04195611960 -0.04206165805260 

2.5 -0.06736587306 -0.06724847827528 

7.5 -0.00000311102 -0.00000310502852 

 

t=0.04 -7.5 -0.00000177704 -0.00000178940536 

-2.5 -0.03876179800 -0.03900766619142 

2.5 -0.07287344918 -0.07259009315499 

7.5 -0.00000337012 -0.00000335562333 

 

t=0.05 -7.5 -0.00000164041 -0.00000166410784 

-2.5 -0.03580845352 -0.03628047761860 

2.5 -0.07882210802 -0.078258511323066 

7.5 -0.07882210802 -0.00000362188033 

 

 

 
  

 

Fig 1 The behaviour solution of KdV equation versus  

x for different values of time by VHPM 

 

 



International Journal of Research in Advent Technology, Vol.6, No.10, October 2018 

E-ISSN: 2321-9637 

Available online at www.ijrat.org 
 

2878 

 

 
Fig 2 The behaviour of exact solution versus x for           

different values of time 

 

 

A contour plot can also be plotted as follows However 

faster solitary wave will overtake the smaller and 

nonlinear part will be significant, after non linear 

interaction solitary waves retain their own identity 

suffering not more than a phase shift. 

 

 

 

 

 
 

Figure 3 The contour plot of u(x, t) obtained by 

VHPM showing waves 

 

6.CONCLUSION  
The approximate analytical solution of KdV equation 

with specific initial conditions is obtained by 

Variational Homotopy Perturbation method in this 

paper . The results and compared with the exact 

solution available which is shown graphically. The 

main advantage of the algorithm is the method 

requires small size of computation compared to the 

other numerical methods. Also the solution obtained 

by variational homotopy perturbation method 

converges rapidly. Thus The VHPM can be applied 

for solving partial differential equation arising in 

different field of sciences. 
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